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©2012 by Charles R. Berg 

ABSTRACT 

 Methods for calculating true stratigraphic thickness (TST) and true vertical 

thickness (TVT) traditionally have assumed no borehole curvature and constant dip.  In 

order to account for borehole curvature, best practice is suggested in which coordinates 

calculated from borehole deviation surveys are used directly in the calculations.  In order 

to account for changing dip, three new, fully 3-dimensional (3D) vectoral methods are 

developed.  Other recommended best practices involve proper methods of dip and 

deviation averaging and interpolation. 

INTRODUCTION 

Standard practice for calculating true stratigraphic thickness (TST) and true 

vertical thickness (TVT) involves a single dip, a single deviation measurement and a 

measured-depth interval (Figure 1).  The usual procedure is to plug in dip, dip azimuth, 

borehole inclination, and borehole azimuth at the top of a bed, along with the measured 

depth interval, into a standard equation (for example, Tearpock and Bischke, 1991).  

 Since dip and deviation both are usually different at the top and bottom of a given 

interval, how are the calculations adjusted accordingly?  The deviation issue will be 

resolved by first putting the problem into vectoral form and using spatial coordinates 

derived from deviation calculation.  In essence, the derivations of TVT and TST equations 

assume a straight line, and the borehole deviation coordinates provide just that.  

To solve the two-dip problem, three solutions are developed.  The simplest, 

vector averaging, which assumes that the change in dip is caused by random error, 

calculates an averaged dip to substitute into the vectoral formula.  The other two methods 

are based on two different geometric assumptions.  The first, the fold-vector method, 



 

2 

assumes that the change in dip is caused by concentric folding.  The second, the wedge-

vector method, assumes that the change in dip is caused by stratigraphic thinning or 

thickening. 

TVT is the vertical distance from the point where the borehole intersects top of the 

bed to the base of the bed.  This distance depends directly on the bed thickness (or TST).  

Therefore, TST will mainly be discussed here.  However, methods for calculating TVT 

will be given for the new TST models. 

Two recent papers have introduced two-dip models for calculating TST, Xu, et al. 

(2007) and Xu, et al. (2010).  Both papers implicitly assume that the upper and lower 

dips have the same azimuth.  Therefore, they are not fully 3D methods, although they 

were adapted here as 3D methods in order to check the calculations on the fold-vector 

and wedge-vector models (see Appendix). 

METHODS 

Single-Dip Equations 

The Setchell Equation 

Following is the formula for TST from Tearpock and Bischke (1991): 

 cos sin cos( ) tan cosd bTST MT         ,              (1) 

where MT = measured thickness, TST = true stratigraphic thickness,  = dip, d = the dip 

azimuth,  = borehole inclination, and b = borehole azimuth. Equation 1 is commonly 

referred to as the “Setchell” equation.  To calculate TVT, TST is divided by the cosine of 

the dip or 

cos

TST
TVT  .                                                                               (2) 
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Figure 1.  Diagram showing the configuration of the borehole and a bed whose TST is 

being calculated.  MT is the difference in measured depth.  The plane of section 

does not have to be vertical, but the borehole and the dip normal do have to lie 

within it.  This is a fully three-dimensional (3D) technique. 

 

 Equation 1 is probably the most widely used equation for calculation of TST and 

TVT, but several other published equations produce identical results, among them are 

Holt, et al., 1977, and Marshak and Mitra, 1988. 

The Vectoral Single-Dip Equation 

Figure 2 shows Figure 1 in vectoral form.  The vector D is the lower hemisphere 

pole of the dip and has a length of TST.  The vector B has the spatial coordinates of the 

borehole deviation and has a length of MT.  The angle  is the angle between the two 

vectors.  From Figure 2 it can be seen that 

cos MTTST .                                                                   (3) 

This equation was published in Bateman and Hepp (1981).  Although they did not 

explicitly state that they were using a vectoral method, from context it is likely they did.  

Since the cosine of the angle between two vectors is the dot product, equation 3 in 

vectoral notation is 
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ˆ ˆTST MT  D B ,                                                                   (4)        

where D̂ is the lower-hemisphere dip-pole direction and B̂ is the borehole direction.  

(The “hat” notation on the vectors denotes unit vectors.) 

 Spherical to rectangular conversion routines for calculating dip and deviation 

vectors are listed in the Appendix in equations A-1 to A-6.  Other coordinate systems 

may be used as long as dips and deviations are consistent with each other, that is, dips 

and deviations are lower-hemisphere poles. 
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Figure 2.  Figure 1 in a vectoral configuration.  As with the lines TST and MT in Figure 1, 

vectors D and B both lie within the same plane, but that plane is not necessarily 

vertical. 

 

 Since the borehole vector B is equal to ˆMT  B , equation 4 can be written 

ˆTST  D • B .                                                                          (5) 

In terms of the vector components, equation 5 is   
ˆ ˆ ˆ

x x y y z zTST   D B D B D B .                                              (6) 

Equations 5 and 6 are different forms of the vectoral single-dip equation.  Combining 

equations 2 and 3, the vectoral equation for TVT is  
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ˆ
z

TST
TVT 

D
.                                                                           (7) 

 Although there is no published derivation for the Setchell equation (1), it can be 

derived directly from the vectoral single-dip equation 4.  Formulas for spherical to 

rectangular coordinate conversion can be substituted into equation 6 to produce equation 

1 (see Appendix). 

Using Deviation Measurements 

 It is assumed here that the deviation calculation that is being done is based on the 

minimum curvature method (Taylor and Mason, 1972).  Even if that is not the case, any 

good deviation calculation method should be able to provide rectangular coordinates 

suitable for calculation of TST.  However, calculation methods that use techniques such 

as spline fits may not be amenable to interpolation techniques discussed below unless 

they have corresponding methods of interpolation. 

 Equation 6 automatically honors both top and bottom deviations, because both are 

used in the calculation of the deviation coordinates.  In addition, the straight-line distance 

MT is used implicitly, as opposed to traditional methodology which simply uses the 

difference in measured depth.  Of course, it is possible to use the Setchell equation (1) in 

the same way by converting the borehole vector to spherical coordinates, but it is simpler 

to use equation 6. 

 Figure 3 shows a borehole superimposed over the vectors shown in Figure 2.  It is 

clear that the difference in measured depth will be larger than the straight-line distance 

MT.  Although significant, the error caused by using measured depth can be small 

compared to the error caused by using only one of the deviation measurements. 
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Figure 3.  The same configuration in Figure 2 but with a highly deviated borehole.  In 

this example it is clear that simply taking the difference in measured depth of the 

bottom and top of the bed will not give the correct length for MT and therefore 

TST.  Furthermore, using either deviation by itself is totally inadequate for 

calculating TST, since the end-point deviation values differ a great deal from the 

overall deviation. 

 

 Using Figure 3 for an approximate configuration, assume that everything is in the 

same vertical plane of section.  Using a measured-depth interval of 500m, dip of 23º, top 

inclination of 0º, and bottom inclination of 73º, MT calculates at 467m.  Using that value 

for MT results in TST of 237m, while the result from using measured depth is 254m.  

Furthermore, if the calculation uses only the top deviation, as is customary, calculated 

TST is 460m, nearly twice the actual value.  Most surprising, if only the lower deviation 

value is used, the TST comes out to -52m, which initially seems to be calculated wrong.  

It is not wrong, however, because the borehole in such a configuration would actually be 

traveling slightly up section and TST is negative when the borehole is traveling up 

section, and the calculation using the lower deviation has, in effect, projected that 
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deviation all the way up the borehole.  See the section on the sign of TST for a detailed 

explanation on its significance. 

Three New Two-Dip Models 

The Average-Vector Method 

 The average-vector method expands on the vectoral single-dip equation by 

replacing the single dip vector with a vector representing the average of the upper and 

lower dips.  Figure 4 shows the configuration of the average-vector method for finding 

TST.  The simplest way to calculate the vector average D̂ is to normalize the vector sum: 
ˆ ˆ

ˆ
ˆ ˆ

1 2

1 2

D + D
D =

D + D
,                                                                       (8) 

where ˆ
1D  and ˆ

2D  are the dip vectors (lower hemisphere poles to dip.)  TST is 

calculated by substituting D̂ from equation 8 into equation 5. 
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Figure 4.  The average-vector method for incorporating both top and bottom dips.  Since 

only the direction D̂ is needed in equation 5, it can be found as the normalized 

sum of the two measured-dip poles ˆ
1D  and ˆ

2D . 

 

 The average-vector method is fully 3D.  Strictly speaking, however, it is an 

approximation because it does not have an underlying geometric basis.  In other words, 

the actual top and base of the bed in Figure 4 should somehow be related physically to 
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vectors D and B.  This method was developed for use with borehole-imager derived dips 

where random scatter caused by both measurement error and random variation is present 

in the original data.  Of the two-dip methods derived here, this one is by far the most 

efficient. 

 The conversion to TVT for the average-vector method uses equation 7, except that 

the z component is from the average vector D̂ . 

The Fold-Vector Method 

 The derivation of the fold-vector equation assumes that concentric folding causes 

the difference in dip and that the stratigraphic thickness is constant.  The top and bottom 

beds are defined by circular arcs, the end points of which are connected by vectors whose 

lengths are TST and whose directions are the dip poles (Figure 5).   

TST MT'

TST 



Top of Bed

Bottom of Bed

D1 D2B'
TST MT'

TST 



Top of Bed

Bottom of Bed

D1 D2B'

 

Figure 5.  The fold-vector configuration with concentric arcs for the top and bottom of 

the bed, terminated by the vectors 1D  and 2D  representing vectors whose 

lengths are TST and whose directions are the top and bottom poles to dip.  As in 

the previous figures, the vectors lie in the same plane, but not necessarily a 

vertical one.   
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 In the average-vector derivation above, the model is set up within the plane 

created by the borehole and the average-dip vector.  In contrast, the fold-vector 

derivation as well as the wedge-vector derivation below the models are set up in the 

plane formed by the two dip poles.  In order to derive the relationships, the borehole first 

has to be projected onto the plane in which the two dip vectors lie.  Below is the formula 

for projecting the borehole onto the two-dip plane:  

 ˆ ˆB' = B - N × N • B .                                                           (9) 

where N̂ is the normal to the two-dip plane.  (See the Appendix for the derivation.) 

 Figure 6 shows the angular relationships used in the derivation.  Using the law of 

sines we get 

 
 

sin
'

sin
TST MT




  ,                                                           (10) 

where MT' is the length of 'B


.  Since  = / 2 – / 2, equation 10 simplifies to 

 sin
'

cos
2

TST MT



 
 
 
 

,                                                         (11) 

the fold-vector equation.  The angle  can be found as the arc cosine of the dot product of 

vectors Ĉ and B̂ :  

 1 ˆ ˆcos '  C • B ,                                                                (12) 

where the vector Ĉ is calculated as the normalized difference of the two dip vectors: 
ˆ ˆ

ˆ
ˆ ˆ

1 2

1 2

D - D
C =

D - D
.                                                                       (13) 

The angle  can be found as the arccosine of the dot product of the two dip vectors: 

 1 ˆ ˆcos  1 2D • D .                                                            (14) 

Equations 11 through 14 constitute the fold-vector method. 
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Figure 6.  The angular relationships used in the derivation of the fold-vector method.  

Note that angle  is the angle between the two dip vectors 1D  and 2D  (see 

Figure 5). 

 

 The configuration of the fold-vector model makes calculating TVT complicated.  

The reason is that the TVT should be calculated at as the length of a vertical line which 

passes through the top surface and intersects the base surface of the folded bed.  The 

derivation involves the intersection of a vertical line with the cylindrical surface 

representing the base-bed boundary (see Appendix for derivation).  Following are the 

equations, in calculation order, for finding fold-vector TVT: 
sin

2sin sin
2

TST
R





 
 
 

,                                                             (15) 

 1 R TST  E D ,                                                             (16) 

ˆ ˆ
x y y xF  N E N E ,                                                             (17) 

ˆ ˆ
x z z xG  N E N E ,                                                              (18) 

ˆ ˆ
y z z yH  N E N E ,                                                             (19) 
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2 2ˆ ˆ
x yA  N N ,                                                                      (20) 

ˆ ˆ
x yB G H N N ,                                                              (21) 

2 2 2 2C F G H R    , and                                                   (22) 
2B B A C

TVT
A

  
  ,                                                       (23) 

where R is the radius of the base-bed cylinder and E is the distance of the cylindrical axis 

from the origin. 

The Wedge-Vector Method 

 The wedge-vector derivation assumes that TST is measured perpendicular from 

the top of the bed (Figure 7).  From the law of sines, 
sin

'
sin

TST MT



 .                                                                 (24) 

From the relationship of the angle sum of a triangle, 

 
2

 and                                                                         (25) 

  .                                                                         (26) 

Substituting equation 25 into equation 26 gives  in terms of  and :  

  
2

.                                                                   (27) 

Substituting equations 25 and 27 into equation 24 and simplifying yields  

 
 

cos
'

cos
TST MT

 



  .                                                    (28) 

In the case where the bed is thinning to the left,   cos  in equation 28 becomes 

  cos .  Finding the correct sign for  will be discussed more fully below.  The 

angle  itself, which is the angular difference between the beds, can be found using 

equation 14.  To find , we use the dot-product relationship for the angle between two 

vectors: 

1
ˆ

cos
'MT

   
  

 
1D • B'

.                                                            (29) 



 

12 

Top of Bed

Base of Bed






D1, TST

B', TST

Top of Bed

Base of Bed






D1, TST

B', TST

 

Figure 7.  The wedge-vector configuration.  As in the fold-vector figures, the vectors lie 

within the same plane, but not necessarily a vertical one.  The angle  is the 

angular difference between the two dip planes, which is the same as the angle 

between the two dip poles. 

 

 As in the fold-vector method, the vector 'B  and its length 'MT  can be found by 

projecting parallel to the intersection of the top and base of the wedge, which happens to 

be mathematically identical to a fold axis calculated using the same beds.  In other words, 

the vector 'B  can be calculated using equation 9.   

 Perhaps the most challenging part of the wedge-vector method is finding the sign 

of  in equation 28.  Figure 7 is in a non-vertical plane in which the relative sense of the 

thinning cannot be determined simply on the angular relationships.  In other words, terms 

such as “up”, “down”, “right” and “left” are only relative to the figure in that plane.  

Mathematically, it is desirable to find a relationship that can determine relative 

orientation.  One way to find left-thinning versus right-thinning is to determine the 

measurement directions of 1D̂  to 2D̂  with the direction of 1D̂  to ˆ 'B .  This is done by the 

relationship 

   2
ˆ ˆ ˆ ˆs  1 1D × D ' • D × B' , or                                                       (30) 

 ˆ ˆ ˆs  1N • D × B' .                                                                        (31) 

( N̂ should already calculated when finding TST using equation A-9.)  If  
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s is positive, the angles are measured the same direction and the bed is thinning right, if s 

is negative, the angles are measured opposite directions and the bed is thinning left.  

Inserting s into equation 28 yields 

 
 

cos
'

cos

s
TST MT

 

 

 .                                               (32) 

Equation 32 along with equations 14, 28, and 29 constitute the vector-wedge method.   
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Figure 8.  When the bed thins left,  and  are opposite directions from each other, but 

when the bed thins right, they are measured the same direction.  This fact 

provides the sign for  in equation 28.  

 

 Calculation of TVT in the wedge-vector method is much simpler than for the fold-

vector method, because it involves the intersection of the vertical TVT line with the plane 

of the dip at the base of the bed.  Figure 9 shows the relationship of TVT to TST in the 

wedge-vector model.  The vector-component equation for the plane of the lower bed is 

     2 1 2 1 2 1 0x x y y z zx TST y TST z TST     D D D D D D .  (33) 

Since the coordinates of a vertical line are (0, 0, TVT), substitute these x, y, and z values 

into equation 33, solve for TVT and get 
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1 2
2z

TST
TVT  D • D

D
                                                                      (34) 

for finding TVT.  Note that positive TVT is used in the vertical line coordinates to make 

the answer come out positive.  To be consistent, TVT should bear the same sign as TST. 
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Figure 9.  The relationship of TVT to TST in the wedge-vector model.  Initially it would 

appear that TVT can be calculated by dividing the TST by the cosine of the dip of 

the base of the bed, but this is not true because this figure is in a vertical plane 

formed by the vectors V and D1, and thus has the azimuth of the top dip.  

Therefore, the dip at the base of the bed in this figure is an apparent dip. 

DISCUSSION 

Considerations in the Calculation of TST 

Convergence with the Single-Dip Methods 

 As the upper and lower dips approach each other, the results of the fold-vector 

and wedge-vector methods approach the results single dip equations as they should.  

However, if the dips are equal or the angle  is close to zero, then a single dip solution 

should be used to prevent calculation problems such as division by zero. 
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The Sign of TST 

 In some applications, the sign of TST is not important and can be ignored.  

However, in other applications, a negative sign is important because indicates that the 

borehole is traveling up section (Figure 10).  The Setchell equation (1), the vectoral 

single-dip equation (5), and the average vector equation will automatically calculate the 

correct sign.  In essence, what controls the sign of TST is the angle between the borehole 

and the dip pole.  If the angle is less than 90°, then the angle is positive and if the angle is 

greater than 90°, then the angle is negative.  An independent means of defining the sign 

of TST for these methods would be to multiply the absolute value of the number times the 

dot product of the vectors divided by absolute value of the dot product:  
ˆ ˆ

ˆ ˆ
TST TST

D • B

D • B
.                                                          (35) 

 The fold-vector equation (11) will always calculate a positive result for TST.  On 

the other hand, the wedge-vector equation will give both positive and negative results for 

TST, but not always consistent with the configuration of the dip vectors relative to the 

borehole vector.  Offhand, one might think that the best way would be to use a vector 

mean of the two dip poles.  In other words, use equation 35 with D̂ calculated from 

equation 8.  On the other hand, the sign could possibly be calculated using 1D̂ in equation 

35. 

 The cumulative error tests helped to determine the best way to calculate sign of 

TST for the fold-vector and wedge-vector models (see Appendix).  For the fold-vector 

method, it was found that using D̂ was considerably more accurate, especially when the 

borehole was traveling roughly parallel to dip (such as in a horizontal well).  For the 

wedge-vector method, using vector 1D̂ was noticeably more accurate overall, but not 

overwhelmingly so. 
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Figure 10.  The reversal of TST sign.  By convention, as the borehole is traveling down 

section, as as on the left, the sign is positive.  When the borehole is traveling up 

section, as on the right, the sign of TST should become negative. 

 

 To be used in cumulative calculations, any method for determining TST should be 

reversible, that is, a borehole traveling the opposite direction through the same dips 

should come up with the same answer, only with reversed sign.  This is true for the 

average-vector and fold-vector methods, but not for the wedge-vector method.  In the 

wedge-vector method, when the borehole is traveling up section, the calculated TST will 

be different from the same configuration when traveling down section.  Reversibility in 

such a case can be forced, however, by reversing the deviation direction, swapping the 

dips, and then making the sign of the result negative.  In the cumulative error test, 

making the wedge vector model reversible improved the maximum cumulative error by 

about 0.5% over the non-reversed solution when the dips had random scatter of 10° (see 

Appendix). 

The Accuracy of the Methods 

Initially, fold-vector and wedge-vector methods were tested for correctness by 

checking with simple graphical examples.  However, when the dip azimuths are different 

and the borehole has yet another azimuth, graphical checking becomes difficult.  The 
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folded-bed and wedging-bed models of Xu, et al. (2007) and Xu, et al. (2010), 

respectively, were adapted to use two azimuths in order to double-check the fold-vector 

and wedge-vector models. (See Appendix for details.)  Alternate derivations were used to 

check the TVT calculations as well. 

Choosing a Calculation Method 

Dips at Short Intervals 

 When formation imager dips or dipmeter dips are available, TST and TVT are 

commonly calculated as cumulative depths in log form.  Such dips will be fairly close 

together and will have scatter caused by measurement error as well as natural variation.  

Initially, one might suspect that if any model were to be used, it would be the wedge-

vector model since folds are not likely to be common in such a small scale, and it is 

common for smaller-scale sedimentary features to have significant thickening or thinning 

(wedging).  It is not clear offhand, however, what the cumulative effect of both 

measurement error and natural scatter might be.  In order to test the methods, random 

scatter was generated in a long interval with varying borehole angles.  It was found, 

surprisingly, that the fold-vector method had by far the least cumulative error of the 

three, so it is the best method to use for short-interval dips (See Appendix for testing 

details).  Remember that for dips with short intervals, sign is important for keeping track 

of relative stratigraphic position within a section. 

Dips at Long Intervals 

 When log-measured dips are not available or they do not cover an entire interval, 

dips derived from subsurface or geophysical mapping may be used to calculate TST.  This 

is where the geometry of the models is most important.  In general, major stratigraphic 

units will have little thickness change within the lateral reach of a well, even when the 

well has traversed thousands of meters laterally.  In most cases, the maximum change on 

dip caused by stratigraphic changes should be on the order of 1 or 2°.  In fact, those dip 

magnitudes are probably within the error of measurement of dip data.  Therefore, caution 
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should be used when applying the wedge-vector model.  On the other hand, structural 

differences in dip can be much larger, making the fold-vector model the appropriate 

choice in most cases. 

 Xu, et al. (2010) propose mixing fold and wedge models.  In the mixing scheme, 

they use linear averaging of the models.  Although this seems a reasonable means of 

solving the problem, it is not known how accurate it might be because of the nonlinearity 

of the models.  A better approach to combining the models would be to break up an 

interval proportionately to the relative amounts of folding and wedging.  An intermediate 

dip would have to be interpolated (see interpolation section below) at the dividing point 

before calculating the respective TST values.  The relative contributions of folding versus 

wedging in the interval could be determined on the basis of structural and isopach maps. 

Interpolation 

 When doing TST calculations, every dip should have a deviation.  The correct 

way to interpolate deviations is to interpolate the depths and coordinates from a deviation 

survey using the minimum curvature method of Taylor and Mason (1972).  Another 

mathematical approach to interpolate deviation is to use Euler-pole rotation (Cox and 

Hart, 1986).  As in deviation interpolation, efforts to interpolate between dips by 

interpolating the dips and azimuths separately can introduce error.  Minimum curvature 

and Euler pole rotation can be adapted for dips as well. 

 Calculated dips derived from both formation image logs and from dipmeters are 

frequently accompanied by deviation data interpolated for each dip.  Service companies 

will sometimes interpolate the inclinations and deviation azimuths separately.  This is not 

the correct way to interpolate deviations.   An example of how much error can be created 

by interpolating or averaging inclinations and azimuths separately would be to take two 

deviation measurements, the first having inclination of 1º and deviation azimuth due 

East.  The second deviation has the same inclination, but deviation azimuth pointing due 

west.  Averaging inclinations and azimuths separately yields 1º due South, when the true 
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answer should be 0º inclination. The angular error is 1º, which may not sound large, but it 

is the same magnitude of the input inclinations.  In other words, separately interpolating 

inclination and azimuth needlessly adds to calculation error.  Since the interpolations 

have to be done for most dips, the cumulative effect over a given interval can be large. 

 Another common error in angular interpolation is to interpolate the direction 

vectors by separately interpolating the direction cosines.  This will always come up with 

the wrong answer except when the angle to be interpolated is exactly halfway between 

the starting and ending angle.  (This fact is used in the average-vector derivation.)  Again, 

the best way to interpolate between angles is either by the minimum curvature or Euler-

pole rotation methods. 

Averaging Dips before Calculation 

 When trying to refine dip data for TST calculation, averaging techniques may be 

used.  There is problem in averaging dips that occurs when operations are done on dip 

directions instead of dip poles.  The problem is likely caused by the fact that a vector of 

the dip direction does not uniquely represent the dip plane.  An example of this would be 

to take two dips, one 5º due East and one 5º due West.  An average vector of the poles to 

dip (the vector mean) comes out with a correct dip of 0º.  However, an average vector of 

the dips produces a vertical dip! 

 When averaging steep dips, care should be taken to decide when dips are 

overturned.  Overturned dips can be represented numerically by subtracting the dip from 

180º and changing the azimuth by 180º--in other words putting the pole in the opposite 

hemisphere.  If this is not done, then the vector average will be wrong by a considerable 

amount.  Alternatively, one can use eigenvector analysis (Woodcock, 1977, and 

Scheidegger,1965) and use the major pole for the average dip.  Eigenvector analysis is 

bidirectional, so whether or not a dip is overturned, the correct answer will be obtained.  

Because of the problem with overturned dips, it is generally believed that eigenvector 

analysis should usually be used when overturned dips are present but not defined 
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explicitly as such.  If the overturned dips are defined, however, simple averaging (vector 

mean) can be used. 

Calculation Pitfalls 

 When doing large numbers of any kind of calculation on a computer, it is 

common that an occasional problem, such as numeric overflow, will stop calculations 

entirely.  The most commonly encountered problem encountered while testing the 

methods was an illegal arccosine of a number slightly greater than 1.  This was caused by 

truncation errors generated when finding the magnitude of vectors.  The problems were 

avoided by simply replacing those numbers whose magnitudes were very slightly greater 

than 1 with 1 within the arccosine function.  Another common calculation problem is 

division by zero.  In many cases, division by zero results from using too complicated a 

solution for the problem at hand.  A good example of this would be where the top and 

bottom beds have the same dip when using the fold-vector equation.  The solution, 

naturally, is to check for the condition and use the simpler relationship, for example, the 

Setchell or vectoral single-dip equations, for the fold vector problem above. 

 Another type of calculation problem results when there is no solution to the 

problem at hand.  A good example is when calculating TVT for the fold-vector method.  

There are cases where an error, caused by taking the square root of a negative number, 

will result when the vertical line representing TVT does not intersect with the cylinder 

representing the base of the bed.  In these cases, the result is legitimate and a way of 

displaying that fact must be implemented before the negative square root is attempted. 

CONCLUSIONS 

 Three new two-dip methods of calculating TST and TVT have been introduced.  

They have been shown to be robust and accurate.  It has also been demonstrated how to 

accommodate borehole curvature into the calculations. 
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 Best practices have been suggested as to averaging and interpolation of dip and 

borehole deviation data.  Averaging and interpolation are important because they are 

used both in the calculation of TST and TVT and the preparation of data for the 

calculations. 
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APPENDIX 

Deriving the Setchell Equation from the Single-Dip Vectoral Equation 

 The Setchell equation (1) can be derived from the vectoral equation 4 by 

substituting the spherical to rectangular conversions below: 

 ˆ sin sinx d   D ,                                                            (A-1) 

 ˆ sin cosy d   D ,                                                           (A-2) 

ˆ cosz  D ,                                                                           (A-3) 

ˆ sin sinx b B ,                                                                     (A-4) 

ˆ sin cosy b B , and                                                              (A-5) 

ˆ cosz  B ,                                                                           (A-6) 

where D̂  is the dip-pole vector and B̂  is the borehole vector.  In this geographic 

coordinate system, positive x is east, positive y is north, and positive z is upward.  This 

coordinate system is standard for geological mapping.  Note that the dip poles are in the 

lower hemisphere.  This makes the sign of calculated TST positive when drilling down 

section (from top to bottom), which follows convention.  Note also that this coordinate 

system conflicts with the convention for deviation calculation, which has z positive 

downward. 

 Expressing the vectoral equation 4 in terms of direction cosines yields 

 ˆ ˆ ˆ ˆ ˆ ˆTST MT x x y y z zD B + D B + D B .                                (A-7) 

Substituting equations A-1 through A-6 into equation A-7 and simplifying results in the 

Setchell equation (1) repeated below: 

 cos sin cos( ) tan cosd bTST MT         .                 (A-8) 

This means that the Setchell equation is equivalent to the vectoral single-dip equation (5).  

There are simpler derivations possible—this derivation demonstrates the equivalence of 

the Setchell and vectoral equations. 

Projecting the Borehole onto the Two-Dip Plane 
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D1 D2

N

D1 D2

N

B B'B B'

 

Figure A-1.  How the borehole vector B is projected along the fold axis of a concentric 

fold to get the borehole projection B' .  Left: The axis vector N is calculated as 

the cross product of vectors 1D̂ and 2D̂ .  Right: The borehole vector B is projected 

parallel to the axis to calculate B' . 

 

 Figure A-1 shows the configuration between vectors B , 'B , and the fold.  

Vector 'B  is the projection of the borehole vector B onto the plane in which the dip 

vectors 1D̂ and 2D̂ lie.  Projecting a vector that starts at the origin onto a plane that goes 

through the origin is fairly straightforward.  A plane can be represented by a normal to 

the plane.  Taking the cross product will get the normal 
ˆ ˆ

ˆ
ˆ ˆ

1 2

1 2

D × D
N =

D × D
,                                                                     (A-9) 

where N̂ is the normal to the two dip vectors.  To get the projection of the borehole 

vector onto the plane, first we make a vector whose direction is defined by N̂ and whose 

length is defined by the distance of B from the plane.  Then that vector is subtracted 

from vector B : 
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ˆ' p B B - N ,                                                                    (A-10) 

where p is the distance of the point of the vector from the plane.  The distance p is found 

by the relationship 

ˆp  N • B ,                                                                           (A-11) 

Substituting equation 11 into equation 10 we get 

 ˆ ˆB' = B - N N • B ,                                                         (A-12) 

the equation for the projection of the borehole onto the plane containing the two dip 

normals.   

Fold-vector TVT Derivation 

 In this derivation, TVT is the length of the vertical vector V that starts where the 

borehole intersects the top of the bed and ends where V touches the base of the bed 

(Figure A-2).  The basic problem is to find the point of intersection of V with the cylinder 

of the bed base.  

V, TVT 
TST 

V, TVT 
TST 

 

Figure A-2.  The configuration for derivation of the TVT equations for the fold-vector 

model.  TVT is the length of a vertical vector V that starts where the borehole 

intercepts the top of the bed and ends at the base of the bed. 

 

 To set up the derivation, we must first define the cylindrical surface that will be 

intersected by the vertical vector V.  A cylinder can be represented vectorally as a shape 

whose points are equally distant from a given line.  Weisstein (2012) gives the following 

vectoral formula for the distance of a point to a line: 
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   2 1 1 0

2 1

d
  




x x x x

x x
,                                                      (A-13) 

where d is the distance, x1 and x2 are points on the line, and x0 is a point that is d distance 

from the line.   

 The distance in equation A-13 is the radius R of the base-bed cylinder.  Since we 

are in a plane perpendicular to the cylinder, the cylinder can be treated as a circular 

section.  The general equation for a chord of a circle is 

2 sin
2

C R
   

 
,                                                                  (A-14) 

where C is the length of the chord.  From Figure 6, using the law of sines yields 
sin

sin
C TST




 .                                                                      (A-15) 

Combining equations 14 and 15 and solving for R gives 
sin

2sin sin
2

TST
R





 
 
 

.                                                             (A-16) 

 The line will be the axis of the fold and the base surface of the bed will be the 

cylinder whose points are equidistant from the axis.  As mentioned in the TST derivation, 

there are two possible configurations, the concave upward and the concave downward 

(Figure A-3).  The vector E spans the shortest distance of the axis to the origin.  The 

vector equation for E for the concave-upward case is 

 1 R TST E D .                                                                  (A-17) 

and the equation for the convex-upward case is 

 1 R TST  E D ,                                                                (A-18) 

Equation A-19 can be rewritten as  

 1 R TST  E D .                                                               (A-19) 
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Figure A-3.  The concave-upward case (left) and the convex-upward case (right) showing 

the relationships of the E vector to R and TST.  The terms “anticline” and 

“syncline” do not necessarily apply, because this figure lies in an arbitrary, non-

vertical plane.  The E vector, which starts at the origin, will define the point at the 

apex of the base-of-bed sector.  Its length will be the distance of the cylindrical 

axis from the origin.  In the concave-upward case, the length of E is R – TST, 

while in the convex-upward case, the length of E is R + TST.   

  

 The concave-upward and convex-downward cases can be determined in exactly 

the same way as the left-thinning and right-thinning cases of the wedge-vector model 

using equation 31.  Concave-upward is equivalent to right thinning and convex-upward is 

equivalent to left-thinning.  Combining equation 31 with equations A-17 and A-19 yields 

 1 s R TST  E D .                                                               (20) 

 In equation 13, vector E can serve as the distance vector of the line from the 

origin, x0, and it can also serve as a point on the cylindrical axis, x1.  To define the other 

point on the cylindrical axis (x2), the normal to the dip plane, N̂ (from equation 9), can be 

added to E.  Substitution of these relationships and R for d into equation 13 yields  

    

 
ˆ

ˆ
R 

N + E - E × E -V

N + E - E
                                                (A-21) 
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Since a vertical vector starting at the origin will have its x and y components equal to 0,  

 0,0, TVT V .                                                                   (A-22) 

Inserting the vector components in A-22 into equation A-21 and simplifying yields 

2 2 0A TVT B TVT C     ,                                                 (A-23) 

where  
2 2ˆ ˆ

x yA  N N ,                                                                       (A-24) 

ˆ ˆ
x yB G H N N ,                                                                   (A-25) 

2 2 2 2C F G H R    ,                                                          (A-26) 

ˆ ˆ
x y y xF  N E N E ,                                                                 (A-27) 

ˆ ˆ
x z z xG  N E N E , and                                                           (A-28) 

ˆ ˆ
y z z yH  N E N E .                                                                 (A-29) 

Solving equation A-23 for TVT yields 
2B B A C

TVT
A

  
  ,                                                       (A-30) 

the fold-vector equation for TVT. 

 One more step needs to be done to find the correct answer.  The “plus or minus” 

(±) symbol in equation A-30 indicates that there are two solutions for TVT.  This is 

because a line has two possible intersections with a cylinder.  In the concave-upward 

case, the origin is entirely within the cylinder, so the correct answer is the smallest value 

of TVT, since V always points downward.  In the convex-upward case, both intersections 

are below the origin, thus we need the shortest distance, or the smallest absolute value of 

TVT.  After the right value for TVT is found, it should be given the same sign as TST.  

Testing the Accuracy and Robustness of the Fold-Vector and Wedge-Vector Models 

 Three types of random tests were conducted on the models.  The first test was a 

stress test that was done to make sure that a rotation of the entire system would not affect 

TST calculations.  (TVT calculations, on the other hand, are affected by rotation because 

the vertical vector will change when the system is rotated.)  Another type of stress test 
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was designed to test the accuracy and robustness of both the TVT and TST methods.  The 

last type of test was the cumulative error test that was run only on the TST models.  It 

tested over a more natural range of variation than the other tests in order to check the 

accuracy and internal consistency of the models.   

 In all except the cumulative error tests, poles and deviations were randomly 

generated over the maximum possible ranges.  The dips and inclinations ranged from 0 to 

180°, and azimuths ranged from 0 to 360°.  Configurations were eliminated that were 

geometrically “impossible”, such as in the fold-vector model when the borehole would 

penetrate the top of the bed twice before hitting the base of the bed.  Although the 

impossible configurations did not create problems for the TST calculations, they 

interfered with the logic of the TVT calculations. 

The Rotation Test 

 In this test, calculations were performed twice for the fold-vector, average-vector, 

and wedge-vector methods.  The first set of calculations was run with rotational dip of 0° 

and the second set was run with a randomly generated rotation dip.  Out of 100,000 

samples, there were a total of 28 disagreements between rotated and non-rotated 

calculations.  All of the disagreements were with , , or  equal to 90°, or  equal to 0°, 

and were related entirely to the math and not to any problem with the rotation itself.  

Unlike TST, TVT will change with rotation because the relative position of vertical line 

will change relative to the dips and deviations. 

Testing the TST Models 

 A common property of geometrical derivations is that if they are derived for one 

configuration, a different configuration may get a different answer.  A good example is 

the sign of  in the wedge-vector equation 28.  In both the fold-vector and wedge-vector 

methods, multiple derivations were tried, each of which had its computational quirks.  

Since many of the cases are similar between the different derivations, comparing the 

different derivations to each other may not be the best way to cross check results.  
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Graphical solution may help in confirming results, but it is easy to overlook cases.  To 

make sure all cases are covered properly, completely different methods of calculation 

were derived.  Two analogues to the fold-vector and wedge-vector models exist, the 

folded-bed and wedging-bed models, respectively, from Xu, et al., 2007, and Xu et al., 

2010.  Although the configurations are similar to their counterparts derived here, there is 

a major difference in that both of the Xu, et al. models implicitly assume that the two dips 

have the same azimuth.  In their derivations, the borehole was projected onto the vertical 

dip-azimuth plane using a trigonometric relationship.  The strength of this type of 

derivation is that the relative orientations are all well constrained, as opposed to the 

vectoral derivations here where everything is projected onto a plane in which the relative 

orientations of the components is easily visualized.  Of course, the main problem with a 

vertical-plane derivation is just that—it assumes a single azimuth.  The adaptation of 

these models to separate dip azimuths was accomplished by rotating the two-dip and 

borehole system it until the first dip is zero.  Since the relative positions remain the same, 

the TST cannot change.  The rotation method used is essentially the same as for the 

removal of structural tilt (See Parks, 1970).  The rotated first dip is zero and can have any 

azimuth; therefore the two-azimuth system resolves into a single azimuth, that of the 

rotated second dip, and the rotated values can be plugged into the folded-bed and 

wedging-bed equations.  The modified folded-bed and wedging-bed models also verified 

the borehole projection equation 9, because they used an entirely different means to 

project the borehole onto the plane of section. 

 In 100,000 tests, there were approximately 20 disagreements between the fold-

vector and modified folded-wedge models and about the same number between the 

wedge-vector model and the modified wedging-bed models.  All of the mismatches were 

caused either when the angle between the borehole and the first dip pole was equal to 90° 

or when the angle between the two dip poles was equal to either 90° or 180°.  These are 

special circumstances not likely to be encountered very often with actual data.  That 
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being said, it appeared that the fold-vector model consistently had the same answers 

when the calculation precision changed, while the modified folded-bed model was not 

always consistent with itself as the precision changed.  It is likely, therefore, that the 

fold-vector model is slightly more accurate.  On the other hand, most of the mismatches 

between the wedge-vector and modified wedging-bed models usually happened when the 

calculated TST values were very large.  In the testing above, the random angles generated 

were integers.  When the random numbers generated had 4 decimal places, there were no 

mismatches, even with 1,000,000 tests.  This simply means is that integers were more 

likely to randomly generate the 90° or 180° exceptions. 

Testing the TVT Models 

Fold-Vector TVT 

 As mentioned before, geometrical derivations have the tendency to change with 

different configurations.  With that in mind, an alternate means of calculating TVT was 

derived based on the intersection of a line with a circle.  The 3D cylinder-line 

intersection was reduced to a 2D circle-line intersection in the y-z plane by rotating the 

system until vector D1 was vertical.  In 1,000,000 random tests, there were 32 

disagreements between the two methods, all of which were between two very large 

numbers (on the order of ±1020) or between a very large number and no answer (no 

intersection of the line with the cylinder).  Although alarming, the very large numbers are 

extremely unlikely to be encountered with actual data.   

Wedge-Vector TVT 

 The vectoral method for calculating wedge-vector TVT was tested against two 

alternative, geometric derivations.  One derivation was in the vertical plane with the first 

dip pole and had the second dip represented as an apparent dip.  The other derivation was 

similar to the circle-line derivation for fold-vector TVT, except that the 2D line 

intersected another 2D line instead of a circle.  There were many more disagreements 

between the three methods, approximately 5,600 out of 100,000 randomly generated 



 

33 

problems.  This is because wedge-vector TST itself gets very large in some instances as 

mentioned above.  As in the fold-vector TVT calculations, nearly all the disagreements 

were between very large numbers on the order of ±1020.  There were a few disagreements 

between methods with reasonably-sized answers, but these were always when the 

difference between the two dips was exactly 90° or the differences between the two dip 

azimuths were exactly 180°. Bear in mind that the problems were generated randomly, 

and that, in nature, it would be rare in stratigraphic wedging to have the dip difference 

exceed 20°, and a dip difference greater than about 45° is virtually impossible because of 

the maximum angle of repose. 

Testing Cumulative Error for TST 

 Dip data from logs can have significant scatter.  The scatter can be caused either 

by measurement error or natural variation.  In order to test the sensitivity of the various 

models to scatter, hypothetical logs were generated with the assumption of constant dip 

through an entire interval, but with random scatter added in (Figure A-3).  The summed 

TST values were compared with the value that an entire interval would have had at 

constant dip.  This was done with scatter of 5° and 10° with borehole angle relative to dip 

calculated at 5° increments from 0° to 180°.  At each of the borehole angles there were 

100,000 calculations per model. 
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Cumulative Error vs Borehole Angle, 5 Degrees Random Scatter
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Cumulative Error vs Borehole Angle, 10 Degrees Random Scatter
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Figure A-1.  Cumulative error with 5° and 10° scatter over a range of relative borehole 

angles to dip normals.  (0° borehole angle would be equivalent to a vertical well 

in horizontal dips and 90° borehole angle would be equivalent to a horizontal well 

in horizontal dips.)  Each point on each plot represents 100,000 calculations.  In 

all cases, the fold-vector model had the smallest error. 
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 Although the fold-vector model had the lowest error, at no point did any method 

exceed about 1% error over the entire interval.  As mentioned before, removing the 

reversibility of the wedge-vector method increased the maximum error by about 0.5%--

not a lot, but confirming that forcing reversibility is justified. 

 These scatter tests are more severe than they might seem, because the distribution 

is not lognormal but constant throughout the interval, and also because the actual scatter 

is effectively double the number used.  (Since the two equal dip magnitudes with 

opposite azimuths will have an angular difference of twice the dip magnitude.)  Thus it 

would appear that all of these methods should be adequate for log or imager derived dips.  

It should be noted, though, that the wedge-vector method can reach very large numbers 

when the angle between the dips approaches 90°.  This is not likely to happen very often, 

but if it does it is likely to cause severe problems.  In other words, do not use the wedge-

vector method if the data have a lot of scatter or, for example, if there is the chance that 

fractures have been mislabeled as beds.  (This could easily happen with dipmeter-derived 

data in which type of dip is unknown.) 


